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We present a new technique to simulate the contact of  a molecular dynamfcs system 
with a thermal wall. A canonical ensemble is obtained, and its statistical and 
thermodynamic fluctuations are studied. The values of  the specific heat found by 
simulation agree with the experimental data. By means  of thermal walls at different 
temperatures, thermal gradients are obtained. The values of  the thermal 
conductivity are consistent with the experimental data. 
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1. I N T R O D U C T I O N  

In this paper we present some new results obtained by introducing stochastic 
boundary conditions in molecular dynamics (MD) computer experiments. 
These boundary conditions can be used to simulate thermal walls at a given 
temperature (that is, the contact with a thermal reservoir), for a MD system. 
This can be done by using an idea utilized recently by Lebowitz and Spohn to 
study head transport in a Lorentz gas. (~) We apply this idea to extend the MD 
technique to the simulation of  a canonical ensemble and of stationary thermal 
nonequilibrium states. It is well known that a canonical ensemble can be simu- 
lated by the Monte Carlo method; however, that method does not allow the 
computation of  time-dependent averages. A dynamical simulation of  a canon- 
ical ensemble has been proposed by Schneider and Stolp2); their technique is 
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computationally cumbersome and restricted to the representation of equi- 
librium states. As for the stationary nonequilibrium state, the first MD simu- 
lation has been performed by Ashurst and Hoover, ~3) but their thermalization 
mechanism is computationally expensive and is not satisfactory from the 
point of  view of statistical mechanics. 

A set of atoms confined between thermal walls, all at a given temperature, 
gives a system with some fixed temperature T, particle number N, and volume 
V, but with fluctuating total energy E. Thus, a microscopic state Of this system 
is one realization drawn from a canonical ensemble; as the system evolves in 
time, members of the ensemble are generated, allowing the computation of 
canonical averages. Furthermore, confining a set of atoms between two ther- 
mal walls at different temperatures, one simulates a stationary, nonequilib- 
rium state: a thermal gradient is set up in the system, and the phenomena 
related to a constant heat flux can be studied. 

2. M O D E L  A N D  R E S U L T S  
We consider a system of N particles enclosed in a parallelepiped in d 

dimensions of sides L i (i = 1 ..... d), interacting through a two-body potential 
of the Lennard-Jones type. This potential is cut off at a distance R c = 3a. As 
usual, ~4) our units are a for length, c for energy, and z = (mc~2/48E) 1/2 for time. 
For argon, G = 3 . 4 0 5 A ,  e = l l 9 . 8 k B ,  and r = 3 . 1 1 2  • 10 -13sec. The 
boundary conditions can be either periodic or stochastic (pairs of opposite 
boundaries being of the same type); the former are well known; the latter are 
realized by contact with a heat reservoir ~1) in the following way. We assume 
that the moving particle arriving at the wall reenters the box at the same place 
but with a velocity sampled from a Maxwellian distribution corresponding to 
the temperature of  that wall. Let us call e the inward normal unit vector at the 
surface, a n d f ~ )  the maxwellian distribution at temperature T. The particle 
arriving at the stochastic wall therefore reenters with a velocity (independent 
of its incoming velocity) drawn from a density proportional to 

e 'pfr(p),  e .p  > 0 

As was already noted, ~ this simple mechanism is sufficient to realize the con- 
tact with a heat reservoir, at least with respect to thermal phenomena. Note 
that beyond the stochastic walls there are no " images"  of the particles in the 
box. 

To simulate an equilibrium state the stochastic walls must all be at the 
same temperature. If all the boundaries are stochastic walls, the thermaliza- 
tion is most effective, but due to the finite size of the system, surface effects are 
important for some thermodynamic properties (for example, the kinetic 
energy is uniform, while the local values of density and pressure are altered 
near the stochastic walls). Thus, it may be convenient to use periodic bound- 
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ary conditions along some directions, and stochastic ones along the others. In 
this way, one gets translational invariance of the system at least along the 
periodic directions. On the other hand, to obtain a stationary thermal gradient 
through the system, one has to put two opposite walls at different tempera- 
tures, while the remaining boundaries can be periodic. The thermodynamic 
analysis of the stationary state must be done by dividing the system into layers 
parallel to the stochastic walls; the thickness of the layers has to be chosen in 
such a way that (i) one can assume local equilibrium in the layer and (ii) the 
number of particles in the layer is sufficiently large. The equations of motion 
of  the particles are generally integrated with the usual central difference 
algorithm(4); when a particle collides with a stochastic wall, the integration 
step following this event takes into account the velocity change of that 
particle. The typical time step in our units is h = 0.032. 

2.1. The temperature is estimated by T, = 2K/dNkB, where K is the 
average of the kinetic energy of  the system over a time z. As z is not infinite, we 
expect T, to differ from T (temperature of the bath). The statistical error 
entailed by this finite time averaging is t / =  (2n/NdJV'c) 1/2, where n is the mean 
number of  time steps between thermally independent configurations and Xc is 
the number of time steps in the stationary state (typically 3000). A rough esti- 
mate of n can be obtained by equating r/ to the actual relative deviation 
6 = [ T -  T~[/T. For the different systems described in the first five columns 
of  Table I, the estimated values of n are reported in column 6. As expected, n 
increases when the number of thermal walls decreases; for systems having the 
same number of stochastic walls, n increases with N, the thermalization being 
a surface effect. It turns out that n is much larger than the time between inde- 
pendent configurations in the microcanonical case (about 30 time steps); this 
is due to the fact that the thermal relaxation of the system to the thermal walls 
is much slower than the dynamical relaxation of the kinetic energy. 

If~ -~ nh, T~ would represent a typical fluctuation of the temperature near 
its equilibrium value T. The variation coefficient # of these thermodynamic 
fluctuations, which are important when the system is small, is given by the 
Einstein formula <5) 

12 =- ( (AT)2)~/2/T= (NC) -~/2 (1) 

where C is the specific heat per particle at constant volume. When ~ > nh, T~ 
should differ from T by less than #T. And indeed ~ is almost always smaller 
than 12, the latter being estimated by formula (1), where we use the experi- 
mental value for C when d = 3 and the value computed in the microcanonical 
ensemble when d = 2 (see Table I). The only exception is the two-dimensional 
case, in which 6 is slightly larger than 12; this is not surprising, because in this 
case n is of the order of  Jffc- Thus, the results show that the thermalization 
obtained with our mechanism is satisfactory. 
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Table I. Energy Fluctuat ions and Specif ic  Heat  per Particle C ~ 

d s N p T n Cmr Cc Ce• Cex(b) 

3 6 256 0.85 0.763 100 2.86 2.23 2,87 2.62 
3 2 256 0.85 0.763 900 2.81 2.67 2,87 2.62 
3 6 864 0.85 0.776 500 2.48 2.73 2.88 2.63 
2 4 1296 0.712 1.177 2500 1.33 1.27 - -  - -  

d, number of dimensions; s, number of stochastic walls; N, number of particles ; p, number 
density; T, temperature of the system; n, number of time steps between thermally uncorrelated 
configurations; C, specific heat per particle, in kB units. The subscript mc (c) refers to the 
microcanonical (canonical) case; the experimental values Cox are taken from Ref. 6 (set a) and 
from Ref. 7 (set b) for argon at density p and temperature T. 

2.2. In  the mic rocanonica l  ensemble  the specific heat  per  par t ic le  C is 
related to the f luctuat ion o f  the kinetic energy(8): 

( ( K -  <K>mc)2>mc ~-- (d /2)Nks2T2(1  - dkB/2C ) 

(>mc represents  the mic rocanon ica l  ensemble  average.  C = Ck + C~, where 
Ck = �89 is the kinetic  c o m p o n e n t  of  the specific heat,  and  Ci is the po ten-  
t ial  componen t .  In  the canonica l  ensemble,  the specific heat  is re la ted to the 
f luctuat ion o f  the to ta l  energy:  

< ( H -  <H>c)2>c = NkBT2(Ck + Ci) 

In general  

( ( H  - <H>c)2>c = <(K - <K>c)2>c + <(U - <U>c)2>c 

+ 2 ( ( K -  ( K ) c ) ( U  - (U>c))c  

In principle,  the first te rm on the r igh t -hand  side is equal  to (d/2)NkB 2 T 2 and 
the last  is zero. Thus,  only  the f luctuat ion o f  the poten t ia l  energy has to be 
explici t ly computed .  Therefore ,  we ob ta ined  C by 

C i = ( U -  U ) 2 / N k a T  2 

and  C k = l d k  a. The values o f  the specific hea t  c o m p u t e d  in var ious  cases are 
repor ted  in Table  I. The values Cmc for d = 3 can be c o m p a r e d  to the value 
2.74 given in Ref. 8 for a s imula t ion  at  p = 0.85 and  T = 0.88. Nea r ly  all the 
values o f  Cmc and  C~ are in the range o f  the exper imenta l  da ta .  In par t icu lar ,  
the more  rel iable s imula t ion  o f  the canonica l  ensemble  seems to be that  of  the 
systems N = 864, s = 6 and  N = 256, s = 2, i.e., the systems that  are less 
affected by  surface effects. 

2.3. We  have a l ready  discussed the m e t h o d  we used to create  a s t a t ionary  
thermal  gradient .  In  such a system there is a s t a t iona ry  hea t  current ,  re la ted 
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to the thermal gradient by Fourier's law in the linear region: 

Jq = - 2 VT (2) 

The microscopic expression for the heat current has been given by Irving and 
Kirkwood. (9) In the center-of-mass reference frame Jq equals the energy 
current jE. We were interested in the computation of the average value of je. 
Due to the nonequilibrium state of our system, we preferred to measure this 
time average in each of the layers in which the box is divided, as explained 
before. As expected, in the stationary state the time-averaged heat current in 
all layers is uniform within the noise; the noise is easily measured by com- 
puting the heat current in the directions perpendicular to VT. Moreover, the 
temperature profile is linear through the system, with the exception of the 
layers next to the walls (Fig. 1). We computed the thermal conductivity 2 from 
(2), where Jq is the heat cui'rent averaged through the layers, and, due to the 
linearity of the profile, IVTI = (T2 - T 1 ) / L .  Here T 2 (T1) is the temperature of 
the hot (cold) wall as it results from the linear least square extrapolation of the 
temperature profile, and L is the distance between the walls. The results are 
shown in Fig. 2 together with experimental data at the same density. (7) The 
gradients involved in the simulation ranged from the one shown in Fig. 1 to a 
value twice as high. A further study of the thermal transport has shown that 
2 does not depend on ]VT] up to values of the gradient much higher than the 
ones reported here. The agreement between our results and the available 
experimental values is satisfactory (within 20~o). Therefore, the above 
method for simulating a thermal stationary state seems reliable, and permits 
the study of physical properties in a nonequilibrium state; the results obtained 
by systematic study of thermal transport and local equilibrium in a stationary 
nonequilibrium state will be presented elsewhere. 
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Fig. 1. Thermal gradient by MD, values converted for argon. N = 864, p = 1.26 g cm-  a (p = 0.75 
in LJ units). The temperatures are measured over 4000 time steps. The dashed line stresses the 
linear profile of T in the bulk. The left wall is at 34 K; the right wall is at 184 K. 
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Fig. 2. Thermal conductivity 2, values for argon. T is the temperature averaged through the 
layers, p = 1.26 g cm -3. (11) experimental values (see Ref. 7). (O) MD simulation, N = 256, 
5000 time steps. (A) MD simulation, N = 864, 4000 time steps. The errors on 2Tare given by the 
combined errors on VT and jE. 
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